Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

New Research: The Critical Role of TAD Boundaries in Genome Function and Organism Development

Posted on May 2, 2023

Imagine the genome as a city with different neighborhoods, each having its function. Topologically associating domain (TAD) boundaries are like the fences that separate these neighborhoods, maintaining distinct regulatory territories. Disruption of these boundaries may interfere with regular gene expression and cause diseases, but the full impact remains unclear.

Researchers utilized CRISPR genome editing in mice to investigate the consequences of deleting eight TAD boundaries. All deletions led to noticeable molecular or organismal phenotypes, including chromatin interaction or gene expression changes, reduced viability, and anatomical abnormalities.

In 88% of cases, local 3D chromatin architecture was altered. This included merging TADs and changed contact frequencies within adjacent TADs. Additionally, 63% of the examined loci exhibited increased embryonic lethality or developmental issues. For instance, a TAD boundary deletion near Smad3/Smad6 led to complete embryonic lethality, while another near Tbx5/Lhx5 caused severe lung malformation.

This study highlights the importance of TAD boundary sequences for proper genome function and organism development. It also emphasizes the need to consider the potential pathogenicity of noncoding deletions affecting TAD boundaries in clinical genetics screening. By understanding the impact of TAD boundary disruptions, we can better diagnose and potentially treat genetic disorders.

https://www.nature.com/articles/s42003-023-04819-w